Exercise 32

Prove the statements in Exercises 32 to 34.
The line segment joining the midpoints of two sides of a triangle is parallel to and has half the length of the third side.

Solution

Consider a triangle with sides a, b, and c.

c

According to the law of cosines,

$$
b^{2}=a^{2}+c^{2}-2 a c \cos \gamma \quad \rightarrow \quad \cos \gamma=\frac{b^{2}-a^{2}-c^{2}}{-2 a c}
$$

Draw the line segment joining the midpoints of two sides and let its length be h.

The aim is to show that $h=b / 2$ and that $\alpha=\beta$. Use the law of cosines again for the smaller triangle.

$$
\begin{aligned}
h^{2} & =\left(\frac{a}{2}\right)^{2}+\left(\frac{c}{2}\right)^{2}-2\left(\frac{a}{2}\right)\left(\frac{c}{2}\right) \cos \gamma \\
& =\frac{a^{2}}{4}+\frac{c^{2}}{4}-2\left(\frac{a}{2}\right)\left(\frac{c}{2}\right)\left(\frac{b^{2}-a^{2}-c^{2}}{-2 a c}\right) \\
& =\frac{a^{2}}{4}+\frac{c^{2}}{4}-\frac{2 a c}{4}\left(\frac{b^{2}-a^{2}-c^{2}}{-2 a c}\right) \\
& =\frac{a^{2}}{4}+\frac{c^{2}}{4}+\frac{b^{2}-a^{2}-c^{2}}{4} \\
& =\frac{b^{2}}{4}
\end{aligned}
$$

Taking the square root of both sides yields $h=b / 2$. Use the law of cosines again to obtain formulas involving α and β.

$$
\begin{aligned}
a^{2} & =b^{2}+c^{2}-2 b c \cos \beta \\
\left(\frac{a}{2}\right)^{2} & =h^{2}+\left(\frac{c}{2}\right)^{2}-2 h\left(\frac{c}{2}\right) \cos \alpha
\end{aligned}
$$

Solve these two equations for the cosines.

$$
\cos \beta=\frac{a^{2}-b^{2}-c^{2}}{-2 b c}
$$

The second equation becomes

$$
\begin{aligned}
\frac{a^{2}}{4} & =\frac{b^{2}}{4}+\frac{c^{2}}{4}-2 \frac{b}{2}\left(\frac{c}{2}\right) \cos \alpha \\
\frac{a^{2}-b^{2}-c^{2}}{4} & =-\frac{b c}{2} \cos \alpha \\
\frac{a^{2}-b^{2}-c^{2}}{-2 b c} & =\cos \alpha,
\end{aligned}
$$

which means

$$
\begin{aligned}
\cos \alpha & =\cos \beta \\
\alpha & =\beta+2 n \pi, \quad n=0, \pm 1, \pm 2, \ldots
\end{aligned}
$$

Since both α and β are between 0 and $2 \pi, n=0$.

$$
\alpha=\beta
$$

Therefore, the line segment joining the midpoints of two sides of a triangle is parallel to and has half the length of the third side.

